多实施学习(MIL)被广泛用于对病理整体幻灯片图像(WSIS)的计算机辅助解释,以解决缺乏像素或贴片的注释。通常,这种方法直接应用“自然图像驱动”的MIL算法,该算法忽略了WSIS的多尺度(即金字塔)性质。现成的MIL算法通常部署在单个WSIS(例如20x放大倍率)上,而人类病理学家通常以多尺度的方式汇总全球和局部模式(例如,通过放大不同大型)。在这项研究中,我们提出了一种新型的跨尺度注意机制,以明确地将尺度间相互作用汇总到单个MIL网络的克罗恩病(CD)(CD),这是炎症性肠病的一种形式。本文的贡献是两个方面:(1)提出了一种跨尺度注意机制,以从不同分辨率的多尺度相互作用汇总特征; (2)生成差异多尺度注意的可视化,以定位可解释的病变模式。通过训练来自20名CD患者的约250,000 H&E染色的上升结肠(AC)斑块,在不同尺度上训练30个健康对照样品,我们的方法在曲线下(AUC)得分为0.8924,与基线模型相比达到0.8924。官方实施可在https://github.com/hrlblab/cs-mil上公开获得。
translated by 谷歌翻译
由于物体的异质尺度,肾脏病理图像的全面语义分割具有挑战性。例如,在整个幻灯片图像(WSI)上,肾小球的横截面区域的距离可能比周围毛细管的64倍,这使得以相同尺度上的同一贴片对两个对象进行分割是不切实际的。为了解决这个缩放问题,先前的研究通常已经训练了多个分割网络,以匹配异质组织类型的最佳像素分辨率。这种多网络解决方案是资源密集型的,无法对组织类型之间的空间关系进行建模。在本文中,我们提出了Omni-Seg+网络,这是一种通过单个神经网络实现多对象(六种组织类型)和多尺度(5倍至40倍尺度)的多尺度(5倍至40倍尺度)的动态神经网络。本文的贡献是三个方面的:(1)提出了一种新型的量表感知控制器,以将动态神经网络从单尺度到多尺度推广; (2)引入了伪标签的半监督一致性正规化,以建模未经注释的组织类型的尺度相关性成单个端到端的学习范式; (3)直接将在人类肾脏图像训练的模型中直接应用于小鼠肾脏图像,而无需再培训,就可以证明高尺度感知的概括。通过从三种不同分辨率下从六种组织类型中学习的约150,000个人类病理图像斑块,我们的方法根据人类的视觉评估和图像词的评估(即空间转录组学)获得了卓越的分割性能。官方实施可在https://github.com/ddrrnn123/omni-seg上获得。
translated by 谷歌翻译
整合跨部门多模式数据(例如,放射学,病理学,基因组和临床数据)无处不在,在脑癌诊断和存活预测中无处不在。迄今为止,这种整合通常是由人类医师(以及专家小组)进行的,可以是主观的和半定量的。然而,多模式深度学习的最新进展已为利用这种过程以更加客观和定量的方式打开了一扇门。不幸的是,先前在脑癌生存预测上使用四种模式的艺术受到“完整模式”设置的限制(即,所有可用方式)。因此,关于如何有效预测脑癌生存的问题仍然存在开放性问题,从放射学,病理学,基因组和人口统计学数据中(例如,可能无法为患者收集一种或多种方式)。例如,我们是否应该同时使用完整和不完整的数据,更重要的是,如何使用这些数据?为了回答前面的问题,我们将跨部门多模式数据的多模式学习推广到缺失的数据设置。我们的贡献是三个方面:1)我们引入了最佳的多模式学习,其中缺少数据(MMD)管道具有优化的硬件消耗和计算效率; 2)我们将有关放射学,病理,基因组和人口统计学数据的多模式学习扩展到缺失的数据情景; 3)收集了一个大规模的公共数据集(有962名患者),以系统地评估胶质瘤肿瘤存活预测。所提出的方法将生存预测的C索引从0.7624提高到0.8053。
translated by 谷歌翻译
多发性硬化症(MS)是一种慢性神经炎症性疾病,多模态MRIS通常用于监测MS病变。许多自动MS病变细分模型已经开发并达到了人类水平的性能。但是,大多数已建立的方法都假定在训练过程中使用的MRI模式在测试过程中也可以使用,这在临床实践中不能保证。以前,已将称为模式辍学的训练策略应用于MS病变细分,以实现最先进的性能,而缺失了模态。在本文中,我们提出了一种称为ModDrop ++的新方法,以训练统一的网络适应于任意数量的输入MRI序列。 ModDrop ++以两种关键方式升级ModDrop的主要思想。首先,我们设计一个插件动态头,并采用过滤器缩放策略来提高网络的表现力。其次,我们设计了一种共同训练策略,以利用完全模态和缺失方式之间的主体内关系。具体而言,主体内共同训练策略旨在指导动态头部在同一主题的全模式数据和缺失模式数据之间生成相似的特征表示。我们使用两个公共MS数据集来显示ModDrop ++的优势。源代码和训练有素的模型可在https://github.com/han-liu/moddropplusplus上获得。
translated by 谷歌翻译
图形神经网络(GNNS),作为一组强大的表示对不规则数据学习的强大工具,在各种下游任务中表现出优越性。具有表示为概念映射的非结构化文本,可以针对文档检索等任务来利用GNN。呼吸GNNS如何帮助文档检索,我们对大型多学科数据集电源线19进行实证研究。结果表明,我们提出的语义导向图函数的基于BM25检索的候选人,而不是杜松子酒和GAT等复杂的结构导向GNN,而不是杜松子酒和GATS,而不是基于BM25检索到的候选者实现更好且更稳定的性能。我们在本案例研究中的见解可以作为未来工作的指导准则,以便为文档检索和分类等文本推理任务提供适当的语义导向的归纳偏差。此案例研究的所有代码都可以在https://github.com/hennyjie/gnn-docrocrocal中获得。
translated by 谷歌翻译
具有经典数字求解器的湍流模拟需要非常高分辨率的网格来准确地解决动态。在这里,我们以低空间和时间分辨率培训学习模拟器,以捕获高分辨率产生的湍流动态。我们表明我们所提出的模型可以比各种科学相关指标的相同低分辨率的经典数字求解器更准确地模拟湍流动态。我们的模型从数据训练结束到底,能够以低分辨率学习一系列挑战性的混乱和动态动态,包括最先进的雅典娜++发动机产生的轨迹。我们表明,我们的更简单,通用体系结构优于来自所学到的湍流模拟文献的各种专业的湍流特异性架构。一般来说,我们看到学习的模拟器产生不稳定的轨迹;但是,我们表明调整训练噪音和时间下采样解决了这个问题。我们还发现,虽然超出培训分配的泛化是学习模型,训练噪声,卷积架构以及增加损失约束的挑战。广泛地,我们得出的结论是,我们所知的模拟器优于传统的求解器在较粗糙的网格上运行,并强调简单的设计选择可以提供稳定性和鲁棒的泛化。
translated by 谷歌翻译
关于Giga-Pixel病理学图像的计算机辅助定量分析提供了精密药物的新大道。该创新主要集中在癌症病理学(即,肿瘤分割和表征)上。在非癌症病理学中,可以要求学习算法同时检查更全面的组织类型,作为多标签设置。现有技术通常需要训练多个分段网络,以匹配非均相组织类型的域特异性知识(例如,肾小球簇,肾小球单元,近端管,远端管,梗塞和动脉)。在本文中,我们提出了一种动态单分割网络(OMNI-SEG),该网络(OMNI-SEG)学习使用部分标记的图像(即,仅针对每个训练图像标记一个组织类型)进行多种组织类型进行肾脏病理学。通过从六种组织类型学习〜150,000的Patch-Wise病理图像,与先前的多网络和多头设计相比,所提出的Omni-SEG网络实现了卓越的分割精度和更少的资源消耗。在测试阶段,所提出的方法仅使用“部分标记”训练图像获得“完全标记的”组织分割结果。源代码可在https://github.com/ddrrnn123/omni-seg中获得。
translated by 谷歌翻译
在神经形态计算中,人工突触提供了一种基于来自神经元的输入来设置的多重导电状态,类似于大脑。可能需要超出多重权重的突触的附加属性,并且可以取决于应用程序,需要需要从相同材料生成不同的突触行为。这里,我们基于使用磁隧道结和磁畴壁的磁性材料测量人造突触。通过在单个磁隧道结下面的畴壁轨道中制造光刻槽口,我们实现了4-5个稳定的电阻状态,可以使用自旋轨道扭矩电气可重复控制。我们分析几何形状对突触行为的影响,表明梯形装置具有高可控性的不对称性重量,而直线装置具有较高的随机性,但具有稳定的电阻水平。设备数据被输入到神经形态计算模拟器中以显示特定于应用程序突触函数的有用性。实施应用于流式的时尚 - MNIST数据的人工神经网络,我们表明梯形磁突出可以用作高效在线学习的元塑功能。为CiFar-100图像识别实施卷积神经网络,我们表明直流突触由于其电阻水平的稳定性而达到近乎理想的推理精度。这项工作显示多重磁突触是神经形态计算的可行技术,并为新兴人工突触技术提供设计指南。
translated by 谷歌翻译
分割前庭施瓦瘤瘤(VS)肿瘤的自动方法和来自磁共振成像(MRI)的耳蜗对VS治疗计划至关重要。虽然监督方法在VS分割中取得了令人满意的性能,但他们需要专家的完整注释,这是费力且耗时的。在这项工作中,我们的目标是在无监督的域适应设置中解决VS和Cochlea分段问题。我们所提出的方法利用了图像级域对齐,以最大限度地减少域发散和半监督培训,以进一步提高性能。此外,我们建议通过嘈杂的标签校正熔断从多个模型预测的标签。我们对挑战验证排行榜的结果表明,我们无人监督的方法取得了有前途的与科技分割性能,平均骰子得分为0.8261 $ \ PM $ 0.0416;肿瘤的平均骰子值为0.8302 $ \ PM $ 0.0772。这与基于弱监督的方法相当。
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译